Journal of Computational Physi&§4,1-40 (1999)

®
Article ID jcph.1999.6290, available online at http://www.idealibrary.conl DE &l.

Iterative Linear Solvers in a 2D
Radiation-Hydrodynamics Code:
Methods and Performancel

Chuck Baldwin® Peter N. Browrf; Robert Falgout;, Frank Graziani, and Jim Jonés

Center for Applied Scientific Computing, L-561, Lawrence Livermore National Laboratory, Livermore,
California 94550; andiLow Energy Density Physics, L-170, Lawrence Livermore National
Laboratory, Livermore, California 94550

Received November 19, 1998; revised May 6, 1999

Computer codes containing both hydrodynamics and radiation play a central role
in simulating both astrophysical and inertial confinement fusion (ICF) phenomena.
A crucial aspect of these codes is that they require an implicit solution of the radiation
diffusion equations. We present in this paper the results of a comparison of five dif-
ferent linear solvers on a range of complex radiation and radiation—hydrodynamics
problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES
with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky
preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These
problems involve shock propagation, opacities varying over 5-6 orders of magni-
tude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian)
meshes. We perform a problem size scalability study by comparing linear solver
performance over a wide range of problem sizes from 1000 to 100,000 zones. The
fundamental question we address in this paper is: Is it more efficient to invert the
matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in
fewer expensive steps (like multigrid)? In addition, what is the answer to this ques-
tion as a function of problem size and is the answer problem dependent? We find that
the diagonally scaled conjugate gradient method performs poorly with the growth of
problem size, increasing in both iteration count and overall CPU time with the size of
the problem and also increasing for larger time steps. For all problems considered, the
multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately
independent of problem size and problem time step). For pure radiation flow prob-
lems (i.e., no hydrodynamics), we see speedups in CPU time of facter$m¢30
for the largest problems, when comparing the multigrid solvers relative to diago-
nal scaled conjugate gradient. For the incomplete factorization preconditioners, we
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see a weak dependence of iteration count on problem size. The speedups observed
for pure radiation flow are typically on the order of 10 relative to diagonal scaled
conjugate gradient. For radiation—hydrodynamics problems, we again see multigrid
scaling perfectly. However, for the problems considered, we see speedups relative to
diagonal scaled conjugate gradient of no more a0, with incomplete Cholesky
in fact either equaling or outperforming multigrid. We trace these observations to the
time step control and the feature of ALE to relax distorted zongs1999 Academic Press

Key Words:radiation diffusion; iterative methods; multigrid; incomplete factor-
ization.

1. INTRODUCTION

Computer codes containing both hydrodynamics and radiation play a central role in s
ulating both astrophysical and inertial confinement fusion (ICF) phenomena [1, 2]. W
increasing experimental data coming from observational astronomy [3] and laser exp
ments [4], there is a need for performing spatially and temporally resolved numerical
culations of such physical processes as convective instabilities in a supernova or radiat
driven Richtmeyer—Meshov instabilities in an ICF capsule. These problems require ac
rately simulating not only fluid motion (including shock propagation) but also the transp
of radiation energy density in both optically thick and thin materials in as computationa
expedient a method as possible.

Typically, a multiphysics code also means multiple time scales, and radiation—hyd
dynamics (RHD) codes are no exception. For problems of interest in this paper, nan
radiation transport coupled to shock propagation, the hydrodynamic time scale is determ
by the speed of sound and a “zone width,” and the radiation time scale is determinec
1/(kpc), wherek is the frequency-dependent opacityjs the material density, andis
the speed of light. The need to know transient shock behavior implies that an expl
formulation of the hydrodynamics equations is required. An RHD code can certainly r
at the smallest time step as determined by the radiation Courant condition

CAt 1
KkpAX? =
whereAt is the time step and\x is the zone width, but this can be extremely inefficient,
causing the code to have to run millions of cycles in order to capture a radiatively driv
implosion. The other option is to run at the largest time step possible within the limits
stability and accuracy. This means running at time steps much larger than the time
demanded by the radiation Courant condition. Therefore, it is imperative from a stabi
standpoint that the radiation be run implicitly. It is this fact that necessitates the use
matrix solvers.

Performing spatially resolved numerical calculations of an ICF implosion can requi
hundreds of thousands to millions of zones in 2D and millions to tens of millions of zon
in 3D. In addition, astrophysical and ICF applications can give rise to a wide range
density and temperature scales coupled to complicated flows thatimply a highly anisotr
distribution of opacities covering a wide range of values (typically five orders of magnitu
across an interface). Consequently, the matrices that need to be inverted in a real w
application of an RHD code not only are extremely large, but are difficult to invert dt
primarily to the wide range in values of the matrix entries. The purpose of this paper is
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compare and contrast the performances of five linear iterative solvers over a wide ra
of RHD problems which cover a wide range of zone counts. Typically, we will consid
small (1000 zones), medium10,000 zones), and large=100,000 zones) problems.
The results presented in this paper are for a DEC-Alpha computer. All calculations
run serially although comments are made concerning future work on multiple proces
platforms.

The five linear solvers chosen are:

1. diagonally scaled preconditioned conjugate gradient (DSCG) [15],

2. generalized minimal residual method with incomplete LU thresholding preconditio
ing (ILUT+GMRES) [15],

3. conjugate gradient method with incomplete Cholesky thresholding precondition
(ICT+CGQG) [5],

4. semicoarsening multigrid (SMG) method [16], and

5. semicoarsening multigrid preconditioned conjugate gradient method (SMG+CG) |1

The motivation for choosing these five algorithms was based in part on the recent rese
interests of the collaborators in the area of interative solvers. As incomplete factorizat
and multigrid methods have been successfully used in many other problem areas, we f
reasonable to focus on these types of methods. Certainly, other methods such as approx
inverse solvers would also be interesting to pursue.

The accuracy and stability of the code are enforced via time step controls which ca
the time step to evolve as a function of time in a complicated fashion. This implies that
linear solvers are presented at each time step with a changing matrix that might or might
be diagonally dominant. Hence, there is an intimate connection between time step beh:
and linear solver performance. We perform a problem size scalability study by compat
linear solver performance over a wide range of problem sizes. The fundamental ques
we address in this paper is: Is it more efficient to invert the matrix in many inexpensive st
(like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)?
addition, what is the answer to this question as a function of problem size and is the ans
problem dependent?

The focus of this paper is scalability of algorithms. In the current parlance, the wc
scalable usually refers to the number of processors. However, our definition is more gen
A code is scalable if it can effectively use additional computational resources to so
larger problems. More precisely, the total work, storage, and communication per proc
should not depend on overall problem size. As such, a specific factor that contribute
iterative numerical scalability is the convergence rates of iterative linear solvers. We st
that linear solver convergence can be discussed independent of parallel computing a
often overlooked as a key scalability issue. The scalability problem of linear iterative solv
should be analyzed in a multidimensional space where one degree of freedom is the pro|
size and the other degree of freedom is the number of processors. The purpose of this |
is to present results of the first phase of a two phase project, that is, solver performanc
a function of problem size. In a subsequent publication, we will present results of sol
performance as a function of the number of processors for a given problem size and ex
the results to 3D.

The rest of the paper is organized as follows. In Section 2, we give an overview of |
radiation—hydrodynamics equations and code that we use in our testing, and then br
describe the underlying discretization methods in the code. In Section 3, we discuss
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above linear iterative methods. In Section 4, we present the suite of test problems, ar
Section 5 we present our numerical results. Finally, a summary discussion is presente
Section 6.

2. THE RADIATION-HYDRODYNAMICS CODE

2.1. Physics

2.1.1. Hydrodynamics.We assume a nonrelativistic formulation of hydrodynamics
whose governing equations are given by

B
8—';)+V~(pu)=0 1)
3
5(pU+Pr)+V-(pUU+<I>r)+Vp=0 2
(1 1,
5 épu +Enm+E )+ V- épu +En+plu+F| =0 3)

In these equations,
o = fluid density,
u = fluid velocity,
p = fluid pressure,
Em = fluid internal energy density,
P, = radiation momentum density,
@, = radiation momentum flux tensor,
E, = radiation energy density, and
F: = radiation energy flux.

In general F, = ¢?P,. The radiation quantities appearing in the fluid dynamics equatior
will be defined in the next section within the context of diffusion theory.

2.1.2. Radiation. The RHD code we use in this study models the radiation transpc
as multigroup diffusion with flux limiting [14, 13]. Multigroup diffusion is an isotropic
approximation to the radiation transport equation. There is no assumption made conc
ing the distribution of photons in frequency, only that the radiation field is approximate
isotropic in space. Causality is enforced via the Wilson flux limiter [14, 13]. In additior
we assume local thermodynamic equilibrium so that the emission function is simply p
portional to the Planck function (Kirchoff’s law) [14, 13]. We also assume that the electro
and ions carry their own temperatures. Implicit in this assumption is that locally, the el
trons and ions can be represented by Fermi—Dirac and Maxwell-Boltzmann distributic
respectively. We allow for both electron and ion conduction by using the form due to L
and More [11], which incorporates both degeneracy and partial ionization effects. For
study, however, we have turned off electron and ion conduction. The electrons and ions
coupled together through the Brysk—Spitzer coupling [6], which describes the rate of ene
transfer between Maxwellian distributions of particles (allowing for a partial degenera
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of the electron gas). The electrons themselves are coupled to the radiation field throug!
opacity which is corrected for stimulated emission. We use tabular forms for the opac
which come from the code XSNQ [12]. This code uses an average atom approxima
to compute bound-bound, bound—free, and free—free contributions to the opacity con
from line absorption, photoionization, and inverse brehmstrahlung. We do not include
effects of Compton scattering. The governing equations are

10e, B 1
6 8t —V <%)V8v) +UU(BV(T6)_SV) (4)
%(ﬂCVeTe) =V. [DeVTe] + PCVeQie(Ti —Te) — /O 0,(B,(Te) —&,) dv (5)
%(Pcvfﬁ) = V- [DiVT] — pCy;Qie(Ti — Te). (6)

In these equations

&, = radiation spectrum,
Te = electron temperature,
Ti = ion temperature,
o, = k,p = absorption inverse mean free path corrected for stimulated emission
De = electron conduction coefficient,
D; = ion conduction coefficient,

Cy, = electron heat capacity,

Cy, = ion heat capacity,
o = material density,

Qie = Brysk—Spitzer electron—ion coupling coefficient, and

B,(Te) = (87hv3/c®)(e"/XT — 1)~ = Planck function.

The material motion and radiation transport are coupledPyja®,, E;, andF,. In the
diffusion approximation, the radiation energy dengityis simplyfoc’osU dv, which defines
the radiation temperature sinEe= aT? (ais the radiation density constant). The radiation
momentum flux tensor is diagonal and is proportional to one-third of the radiation ene
density. The radiation energy flux is related to the spectrum via Fick’s law and is a dir
consequence of the near isotropy of the radiation. For specific details regarding radia
transport and the diffusion approximation, we reference the works of Pomraning [14]
Mihalas and Weibel-Mihalas [13].

2.2. Numerical Solution Procedures

2.2.1. Hydrodynamics.The RHD system (1)—(6) is solved on an ALE (Arbitrary
Lagrangian Eulerian) mesh [1]. ALE is a technique that makes use of the ability
Lagrangian methods to let zones track material motion and at the same time avoid
mesh entanglements that Lagrangian codes inevitably get into by allowing the mes
relax once a zone becomes too distorted. The latter step is called remap. We refel
interested reader to papers in [1] for the details of ALE hydrodynamics. The zones t
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make up the mesh always remain quadrilateral in 2D or hexahedral in 3D. Hence,
mesh is structured and logically rectangular. In addition, unlike AMR (adaptive mesh
finement) the number of zones in the problem remains fixed in time. The solution sche
is predictor—corrector and is fully second order accurate in space and time. There
monotonic artificial viscosity Q) [2]. The hydrodynamics step is governed by an explicif
time step control determined by the sound speed and the zone size. The hydrodyr
ics is operator split from the radiation and is solved for first in any given cycle. In ar
given cycle, the hydrodynamic and radiation steps are performed only once. This imp
that the coupled RHD problem can only be first order accurate in time. Figures 27-
show a typical time snapshot sequence of an ALE mesh created during a radiatively dr
implosion.

The radiation equations (4)—(6) are solved on the hydrodynamic grid. It is this fact a
the fact that ALE relaxes a mesh that becomes too distorted that implies that ALE has
effect on the matrix solvers themselves. We will comment on this observation in subseqt
sections.

2.2.2. Radiation. The multigroup radiation equations are solved via the partial ten
perature method [2]. A linear continuous finite element representation based on triang
elements is used for the “div—grad” operator [8, 18]. In 2D this means that we have a 9-p
stencil while in 3D the stencil is 27. Integrating the “div—grad” over the volume of the
zone yields

1
A\ Ve, av
Ah zone( (301) ))

= —ayjyilenj+1 —&vjl +avjlen ) — v j—1] — Do j4slev j+s — € j]

+bo,j[enj — &v,j-s] — b jrstalen jrsi1 — v jl F b jlen; — &0 j-s-1l

+bmy jiafen josia — &uj] +bMyjisfenj — evjas-1l- (7)

The terms in Eq. (7) represent eight fluxes: four for the face fluxes (proportioaaktad

bp) and four for the fluxes at the corners (proportionabtcandbmy). The latter fluxes

go to zero in the limit of an orthogonal mesh. In addition, the spectrums evaluated

at the new time step. Solving the radiation equations on an ALE mesh which is logice
rectangular but nonorthogonal in terms of physical space yields a matrix which has a sin
striped structure. In Figs. 1 and 2, we show the generic form of the matrix generated by
radiation equation on a 2D ALE mesh and the corresponding zonal couplings of Eq.
generated by the finite element representation of the “div—grad” operator. Flux conse
tion implies that the matrix is symmetric. In addition, the matrix is also positive definit
Besides containing incoming and outgoing flux information, the main diagonal contal
information regarding local coupling physics and the old time step radiation spectrt
These terms are orderH10(At). Couplings to neighboring zones are represented in tt
matrix by the off-diagonal terms and come from incoming and outgoing fluxes. The me
nitude of the corner coupling terms is proportionalDat cog9), whereD is the diffu-

sion coefficient across the nodat is the time step, and is the angle between the

andy axes of the zone. Note that 4f=90°, the corner coupling goes to zero and the
9-point stencil reduces to 5-point. In this case, the matrix structure simplifies considera
with the matrix consisting of nonzero entries on the main diagonal, directly above a
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D x 0 0..x x 0
D x 0 & X 2 X 0 .
D@ .. % x x 0
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0 «x
0 0 xD x O.........

FIG. 1. Generic matrix nonzero pattern.

below the main diagonal, and nonzero entries one stride length away also forming d
onals. Once the mesh becomes nonorthogonal, nonzero entries start appearing abov
below the diagonals that are one stride length away from the main diagonal. Running
radiation problems implies for our code a fixed mesh. However, running hydrodynam
implies ALE and the subsequent relaxation of distorted zones. This implies for radiat
that the corner couplings which appear above and below the diagonals that appear one -
length away from the main diagonal can be relatively small compared to diagonal entri

Equations (4)—(6) are solved implicitly with the understanding that the opacity, condu
tion coefficients, heat capacity, and electron—ion coupling are evaluated at the start o
radiation step and hence contain only updated information coming from the hydrodynan
step. In addition, the Planck function is linearized about the old time stamp value for

FIG. 2. Generic zonal couplings.
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electron temperature. All the coupled radiation, electron, and ion equations are operator
from each other and are therefore solved in several steps. These are outlined as follow

1. Solve the radiation diffusion/B of the electron—ion coupling, and all of the radiation—
electron coupling.

2. Solve another /B of the electron—ion coupling.

3. Solve the electron conduction and the remainiygdf the electron-ion coupling.

4. Solve the ion conduction.

2.2.3. Time step controls.The stability of the hydrodynamics demands a Courant cor
dition based on the sound speed and zone size. Accuracy on the other hand restrict
time step for the radiation. Since the radiation solver step is split from the hydrodynar
solution step, the solution to a coupled RHD problem is only first order accurate in time.
addition, the Planck function is linearized about the old electron temperature, the vari
couplings between the photon, electron, and ion fields are operator split, and quant
such as the specific heat use old time stamp values all leading to inaccuracies if the
step is too large. For these reasons the code restricts the fractional change in the radi
temperature in any given zone to be less than 20%. By running analytic test problems
have found that this restriction yields reasonable accuracy. The splitting of the hydro
namic and radiation steps also means that it is important to limit the impact of a partict
physics package on any other package. For this reason we introduce a limit on the re
tion acceleration. Radiation acceleration arises due to the transfer of momentum from
photons to the fluid, which in turn induces a force or acceleration on the fluid. In diffusic
this acceleration is essentially simply the gradient of the radiation pressure. Hence the
step

At ~ # x zone size
radiation pressure

defines a causality condition whereby the signal produced by the radiation pressure a
erating the fluid cannot exceed an effective sound speed given by the square root o
radiation pressurgl

At this point we have several time scale restrictions governing the accuracy and stab
of the code. A single time step governs both the radiation and the hydrodynamic packe
and it evolves dynamically from some initial value. The choice of the initial value is proble
dependent and depends on the material properties and geometry of the system under
A general rule of thumb is that for problems involving optically thick materials an initi
time step of At =10~% s works well, while for optically thin materials an initial time
step of At =108 s is needed. A point worth mentioning is that the RHD code used i
this paper is postdictive, in the sense that if any one of a series of time step restrictior
violated the code only decreases the time step on the following cycle and not the cur
cycle. Consequently, if any given time step satisfies the controls listed, then the time ste
allowed to increase by a factor of 1.2 in the next cycle. If, however, the time step violates :
of the restrictions (i.e., Couramy T,/ T, < 0.2, or radiation acceleration) the code operate:
on the next cycle at a time step dictated by the largest of the three controls.

The time step control, as we will see, has a bearing on the efficiency at which a pa
cular solver can invert the matrix. Hence, there is an intimate connection between so
convergence rates and evolving time step values.
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3. ITERATIVE LINEAR SOLVERS WITH PRECONDITIONING

3.1. Diagonally Scaled Conjugate Gradient

The first preconditioned iterative method we consider is the diagonally scaled conjug
gradient method (DSCG). By this we mean the preconditioner for the conjugate gradi
method is simply the inverse of the main diagonal of the matrix. This has the virtue of e
of coding, and for the time-dependent simulations of interest works quite well when f
time step size is very small. This follows since the matikas the formA=1 — AtJ,
whereJ is the discretized spatial differential operator. For very sma]l A is diagonally
dominant, and so the inverse of its main diagonal should be a good approximate inve
However, the performance of DSCG is highly dependent on the problem size, degrac
quickly as the size increases.

3.2. Incomplete Factorizations as Preconditioners

The use of incomplete factorizations as a technique for generating preconditioners
been extensive in the literature. We refer the reader to the excellent book by Saad [15] 1
comprehensive development of these techniques. The major advantage of using incom
factorizations as preconditioners is their easy application to a variety of problems. Th
techniques only require a matrix; no specific knowledge of the problem under conside
tion is required, unlike the case with structured multigrid methods. However, the stand
approaches to using these methods typically do not scale well with problem size, and
numerical results below demonstrate this. For comparison purposes, we consider tw
complete factorization methods, both developed by Saad and his co-workers. Specific
we use ILUT (Saad [15]) and a modified version of ILUT designed for symmetric positi
definite problems, called ICT. We only briefly describe these techniques, and refer the re;
to the above references for more detail on ILUT, and a recent report describing ICT [5]

3.2.1. ILUT. The ILUT algorithm was conceived as a combination of two earlier tect
nigues, one being lavel-of-fill concept and the otherthreshold dropping tolerancé&oth
techniques were effective by themselves on certain classes of problems, but were pla
with inherent difficulties. The level-of-fill concept did not take into account actual numeric
values in the matrix, and hence could perform poorly on some problems where fill-in v
important, while with the drop-tolerance approach it was difficult to estimate the neec
storage and work to accomplish the factorization. ILUT was the first incompletel-
gorithm to successfully combine the two approaches. The following basic approach i
follows:

GENERIC INCOMPLETELU FACTORIZATION WITH THRESHOLDING, ILUT(Ifil, droptol)

row(l:n) = 0, U(1,1:n)=A(1,1:n)
do i=2,n
row(l:n) = A(i,1:n)
do k = 1,i-1 (and where row(k) .ne. 0)
row(k) := row(k) / U(k,k)
apply a dropping rule to row(k)
if (row(k) .ne. 0) then
row(k+1:n)=row(k+1:n)-row(k)*U(k,k+1:n)
endif

0 ~NOoO O WNN - O



10 BALDWIN ET AL.

9 apply a dropping rule to row(l:n)
10 enddo

11 L(i,1:i-1) = row(1l:i-1)

12 U(i,i:n) = row(i:n)

13 row(1l:n) = 0

14 enddo

The dropping rules in lines 5 and 9 are based on an input relative toletanpeol and a
sparsity dropping tolerancgefil. In ILUT(1fil,droptol), the following rules are used:

e Inline 5, if [row(k)| < tj = droptol - 2-norm of rowi, then rowk) := 0.

e Inline 9, first any element in the row with magnitude less thais dropped. Then
only thelfil largest elements in tHe part of the row and thef il largest elements in the
U part of the row are kept, plus the diagonal element.

The second step controls the number of elements per row. Note that no pivoting is perforr
An ILUTP variant performs pivoting. The advantages of ILUT over earlier ILU technique
are two-fold:

e Taking droptol =0 and1fil =n gives an exact sparse LU factorization with no
pivoting. Thus, the user can control the quality of the preconditioner.
e The user can determine how much storage is needed beforehand.

Since ILUT is formulated for nonsymmetric matrices, we use ILUT as a preconditioner f
the Generalized Minimal Residual (GMRES) linear iterative method.

3.2.2. ICT. For symmetric positive definite (SPD) problems, ILUT is too costly, in
terms of both the storage and the computational work involved. Generally, the Chole
factorization for SPD matrices is used as the basis for generating a preconditioner bs
on incomplete factorization. The ICT algorithm is based oh. &1.7 decomposition of an
SPD matrixA. Briefly, consider the sequence of matrices

Ay um+1)

T
Wip1  Qk+l

A1 = (

whereA, = A. If A, is nonsingular and it DL factorization
A = LgDyL}

is already available, then tHeD LT factorization ofAc.1 is
Lk 0\ /Dc 0\ /L{ ¥
Ak+l = T ’
Y1 1/\ 0 dy1 o 1

1y -1
Yit1 = DLy wia

in which

;
Oks1 = k1 — Yir1 DiYist-

Hence, the last row and column of the factorization can be obtained by solving a ¢
unit lower triangular system and computing a scaled dot product. The ICT incompl
factorization based on this factorization is given as follows:



LINEAR SOLVER COMPARISON 11

GENERICINCOMPLETELDLT FACTORIZATION WITH THRESHOLDING, ICT (Ifil, droptol)

0 D(1,1) = A(1,1), L(1,1) = 1;

1 do k = 2,n

2 row = A(k,1:k-1)

3 do i = 1,k-1 (and where row(i) .ne. 0)

4 if (abs(row(i)/D(i,i)) .le. droptol) row(i) = 0O
5 if (row(i) .ne. 0) then

6 do j = i+1,k-1

7 row(j) = row(j) - row(i)*L(j,1i)

8 enddo

9 row(i) = row(i) / D(i,i)

10 endif

11 enddo

12 drop all but the 1fil largest elements in row
13 D(k,k) = A(k,k) - rowkD(1:k-1,1:k-1)*row’

14 L(k,1:k-1) = row

15 L(k,k) =1

16  enddo

(Note thatin the algorithny,ow representy,fﬂ.) If Ais SPD, then the diagonal mattixhas

all positive entries in ita. DL T factorization. For the incomplete factorization, this may nc
longer be true, and likely signals a poor approximation to the original matrix. In the testi
described below, we use the ICT algorithm as a preconditioner in a PCG (Preconditio
Conjugate Gradient) linear iteration.

3.2.3. Ordering strategies.When incomplete factorization techniques are used to gel
erate preconditioners, the ordering of the rows and columns of the matrix can have a dran
effect on the amount of fill-in that occurs. For direct solvers, some version of the minimt
degree algorithm is a good generic choice for a reordering strategy as it produces the
amount of fill-in. However, a reordering strategy that generates the most effective prec
ditioner based on an incomplete factorization typically is not the one with the least fill-i
Some strategy based on minimizing the bandwidth, such as the reverse Cuthill-Mc
(RCM) reordering strategy, often generates more effective preconditioners. This fact is
well understood, and has been the subject of much research [15]. We use the RCM reo
ing algorithm in all of the problems considered below, as it is crucial for good performan
on the larger test problems.

3.3. Multigrid Solvers and Preconditioners

Multigrid methods can be very efficient solvers for the linear systems arising from d
cretized elliptic partial differential equations. Multigrid’s chief advantage is that it is
scalable algorithm in that, when properly designed, the solver's convergence rate is it
pendent of the size of the discretized system. Standard multigrid methods combine sir
relaxation (which quickly reduces high-frequency error components) with error corre
tion from a coarser grid (which can accurately represent low-frequency error componer
For our problem, the multigrid solver must be able to efficiently deal with anisotropi
and widely variable coefficients. The semicoarsening algorithm used is based on the v
by Schaffer [16] (see also [7, 17]), and we will briefly discuss this particular multigri
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algorithm. We focus on the 2D algorithm (commenting on the 3D extension) and on the
features that differentiate it from standard multigrid methods. For more general multig
references, see [3, 4, 9, 19]. For current information on the multigrid field, including
extensive bibliography, a repository of papers and codes, and current events, acces
World Wide Web server MGNet at http://casper.cs.yale.edu/mgnet/www/mgnet.html.

3.3.1. SMG: Semicoarsening multigridLet AU =F be the given linear system to
solve, where the unknowll and right-hand-sidd- are vectors defined on a logically
rectangular grid. We will use @msuperscript to denote quantities defined on the given gric
The matrix A is symmetric, positive definite and connections have the standard “neare
neighbor” 9-point stencil form. The multigrid algorithm of Schaffer uses a combination
semicoarsening, line-relaxation, and operator-based interpolation. The resulting algori
is efficient and robust with respect to anisotropic and widely variable coefficients in t
matrix A.

As the grid is logically rectangular, there is a unique indieX ) for each point on the
grid, and the grid can be given a “red/black” line coloring. All unknoWfisj), j odd} are
considered “red” and will be used for the coarse grid. We will usie superscript to denote
guantities defined on the coarse grid. This is called semicoarsening (as opposed to fi
standard coarsening) as the coarse grid is only coarser in one of the dimensions. Red/
line relaxation involves updating the solution at all red lines to satisfy their equations
tridiagonal solve for each red line) followed by a similar update for the black lines. Becalt
of the 9-point stencil, there is no dependence between lines of the same color and they ¢
be updated in parallel.

An important, unique feature of the SMG algorithm is the definition of the interpolatic
operatorl}}, used to transfer an error correction from the coarse to the fine grid. T|
definition is motivated by the relationship between errors on red and black lines afte
black line relaxation sweep. To briefly describe the approach, let

Ajg-1Ugi+ AU+ AjgUspn=Fy 8)

be the equations for théth line. HereU; = (U; 5,i =1, ..., ny) and similarly forU; 4 ;.
After this line is relaxed, the error equation is

Aji—1€3-1+ Ajse;+ Ajgp1€141 =0, ()]
S0
e; = —A35 A 1801 — AJS A 18041 (10)

After black line relaxation this relationship describes how the error at black lines is 1
lated to the error at red (coarse) lines; it gives the “ideal” interpolation formula. Howev
using Eq. (10) leads to nonsparse interpolation operators. In the SMG algorithm, sp:
approximations to these ideal interpolation operators are used. The ma{wqéﬁAJ‘ -1
and—Aj,lJ A; ;.1 are approximated by diagonal matrices with the same action on const
vectors. The computation of these interpolation operators involves a tridiagonal solve
each black grid line.

With this definition for the interpolation operatb},, its transpose is used for the restric-
tion operatorl hZh (used in transferring residuals from the fine to the coarse grid), and tl



LINEAR SOLVER COMPARISON 13

coarse grid versions dk are defined by the Galerkin condition, i.82" = |21 A"} These
components are then used in a standard multigricycle as outlined below.

V (v1, v2)-CYCLE

1. Pre-relaxation o"U" = F". Performv; sweeps of red/black line relaxation.
2. SetF?" = |2"(FM — APUM),

3. “Solve” A"U?" = F2" by recursion.

4. CorrectU" « UM+ 15U,

5. Post-relaxation oA"U" = F". Performv, sweeps of black/red line relaxation.

The equation to be solved in step 3 has the same form as that of the origirtapgoiolem.
Itis solved by applying the same algorithm using a still coarser dridEdentually, a coarse
grid is reached that has a single grid line and line relaxation is a direct solver.

3.3.2. SMG+CG: Multigrid as a preconditionerAs will be shown in the numerical
results, the SMG algorithm alone can be an efficient solver for our linear systems. Howe
using it as a preconditioner in a PCG (Preconditioned Conjugate Gradient) iteratior
generally a more robust strategy and, depending on the problem, can be more efficie
well. In the preconditioning step of PCG we apply a singleycle of SMG, and thé/-
cycle must be constructed so as to yield a symmetric preconditioner. Reference [10] prov
conditions that guarantee symmetry of a multigvietycle, and the SMG algorithm meets
these provided that the number of pre-relaxations,is equal to the number of post-
relaxationsy,.

Inall our numerical tests, the SMG runs used@, 0)-cycle and the SMG+CG runs used
aV (1, 1)-cycle asthe preconditioner. TRe&1, 0)-cycle is generally the most efficient stand-
alone solver, so the SMG+CG carries the computational overhead of the PCG algori
plus the additional relaxation sweeps needed to guarantee symmetry. In comparing
SMG+CG runs to the runs using SMG alone, we found that SMG+CG runs have gre:
computational work per iteration, but require fewer iterations.

4. THE MULTI-PHYSICS TEST SUITE

The purpose of the multiphysics test suite is to present to the code, and in particuls
the linear solvers, a wide spectrum of problems. In this way, an accurate and fair assess
of the speed of the solvers can be made. The first part of the test suite covers radiation
alone without the effects of hydrodynamic motion. The second part tests radiation flow in
presence of material motion. Two test problems that fit into the pure radiation flow categ
are (1) radiation flow on a highly distorted mesh in 2D (Kershaw mesh problem; see Fig.
and (2) radiation flow in a spherical geometry (see Fig. 11). In both cases, the lack of mate
motion means that the mesh is fixed in time. The last two problems run in the suite test
RHD capabilities of the code. More importantly, from the standpoint of this paper, it te:
the linear solvers on a mesh that is changing with time. Because of the complicated n
pattern that arises from shocks and ordinary material motion, the time step is a complic:
function of time. The test suite is intended to test the ability of the linear solvers to solve
radiation equations on a dynamically changing mesh with a time step control determi
by both hydrodynamic and radiative processes. The net result as far as the linear so
are concerned is that the matrix itself is changing both in the values of its elements an
its structure. The solver performance tests presented in this paper are therefore more s
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and realistic than test matrices, which are typically used to judge solver performance.
do not wish to imply that our test suite is exhaustive, only that it presents, for what \
believe the first time, a realistic assessment of linear solver performance. Figures 3, 11
and 27 show the initial geometry and mesh for each of the problems in the test suite.
All problems presented here were run without electron or ion conduction. In addition, t
number of frequency groups was taken to be one. In this way, the statistics presented ir
paper are for only one matrix solve per cycle. The advantage of doing this is that the per
mance figures for radiation diffusion are not confused with those of material conducti
Although calculations without conduction or with one frequency group may not give tl
best representation of reality, this is not the purpose of this paper. We are primarily intere:
in linear solver performance in complex RHD flows. The importance however, of the line
solver timing results presented here becomes magnified when a full multigroup calcula
involving, say, 50 groups is performed. For example, the results presented for CPU t
spent in the radiation package would be multiplied by approximately 50 times, there
dominating other physics packages such as hydrodynamics. This means that a slow ir
cient solver becomes a tremendous sink of time in any multiphysics code since the sc
has to perform the inversion for each frequency group. This fact should be kept in minc

4.1. Kershaw Problem

The problem consists of a slab of CH foam heated at one end with a constant temper
source of 300 eV. The slab measures 4.0 cm in the vertical direction and 4.5 cmin the t
zontal direction. The CH foam is at a constant density of 1.05 g/cc. The mesh is shc
in Fig. 3. The small problems consists of 4®0 zones, the medium 80100 zones, and
the large 320« 400 zones. The boundary conditions are reflecting at the right, top, a
bottom boundaries and open at the left boundary. The problem describes Marshak v
propagation. The problem is run to TQus.

4.2. Spherical Diffusion without Hydrodynamics

This problem consists of a ball of DT ice at a density of 0.25 g/cc at a radius of 0.04 ¢
a shell of CH foam at density 1.05 g/cc and a radius of 0.07 cm, a shell of sourced He
density of 0.0005 g/cc, a temperature of 300 eV, and a radius of 0.24 cm, and finally a s
of Au at a density of 19.3 g/cc and a radius of 0.3 cm (see Fig. 11). This problem repres:
an ICF capsule where the DT ice is the fuel, the CH foam is the ablator, and He is
gas inside the Au hohlraum. The source temperature is set at 300 eV. This problem is
without material motion and hence merely tests the diffusion of radiation on a fixed po
geometry. The problem was run with 1000 zones (10 anguliEd0 radial), 10,000 zones
(10 angularx 1000 radial), and 100,000 zones (100 anguld000 radial). The problem is
taken to be rotationally symmetric about thexis and is run to 1 us.

4.3. Radiatively Driven Symmetric Implosion

This problem s identical in principle to the previous problem with hydrodynamics turne
on (see Fig. 19). This problem describes the ablation of the CH foam followed by t
subsequent implosion of the DT ice capsule. The DT capsule continues to implode v
corresponding increases in temperature and density until the shocks converge on the ¢
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and bounce, whereupon the DT capsule explodes. This problem was run on an initi
uniform rectilinear mesh in the small (3030 zones), medium (100 100 zones), and
large (300x 300 zones) categories.

4.4. Radiatively Driven Asymmetric Implosion

This is a problem identical to the radiatively driven symmetric implosion except th
the DT ice capsule has been shimmed so that it is an ellipse (since this problem is
rotationally symmetric about the axis the capsule really is an ellipsoid). The major axis
is 0.06 cm while the minor axis is 0.04 cm (see Fig. 27). In this problem, the CH foam
heated and ablates in an asymmetrical fashion. This causes an asymmetrical implosi
the capsule. This problem was run with 1000 zones (10 anguled0 radial), 10,000 zones
(100 angula 100 radial), and 100,000 zones (100 anguldr,000 radial). This problem
tests the linear solver performance on a mesh, though initially symmetric, becomes ske
in time due to off center convergence of incoming shocks.

5. RESULTS

The Kershaw calculations were performed on a DEC-Alpha with a 300 Mhz Alpha ct
with 8 GB of main memory. The other problems were performed on a 625 Mhz DEC-Alp
chip with 8 GB of main memory. Before a given result was considered satisfactory, we |
to make sure that a given problem run with a variety of linear solvers was giving identi
answers. In order to do this we compared time-dependent data at selected zones in a sf
problem and also the time step as a function of time for each solver. This method pro
useful in locating several bugs in the linear solvers. A given problem run on a variety
linear solvers was not considered acceptable unless all time-dependent data for a ¢
problem size agreed to one part irf10

For all of the runs using ILUT and ICT, we usédoptol =0.0001 andl1fil = 20.
Additionally, in all of the figures showing iteration and time step counts, the labels A, B,
D, and E refer to the methods DS+CG, ILUT+GMRES, ICT+CG, SMG, and SMG+C(
respectively.

5.1. Kershaw Problem

This problem was run to a time slightly past steady state. Figures 3, 4, 5, and 6 show
evolution of the radiation front from time zero to steady state. The transient profile sho
in Fig. 4 shows some mesh imprinting. The steady state profile however shows unif
contours; a benefit of the finite element representation of the “div—grad” operator. For
small, medium, and large Kershaw mesh problems, Figs. 7, 8, and 9 show iteration c
per cycle as a function of problem time in microseconds. In addition, in Fig. 10 we sh
the time step in microseconds versus problem time, also in microseconds, for the mec
size problem. (For all of the tests, we show only the time step history for the medit
size problem, as this is representative of the other cases.) We have started the time s
1071%ys. This time has been made artificially small so that the DSCG algorithm solv
the matrix in one iteration. As mentioned in Section 2.2.3, the code allows the tir
step to grow by a factor of 1.2 per cycle unless a given accuracy or stability criterior
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FIG. 7. lteration counts for small Kershaw problem.

violated. The nature of this particular problem (i.e., the mesh) and its corresponding ti
step controls imply that the matrix is diagonally dominant for a period of time beginning
t =109 us. As the radiation front moves through the distorted mesh, zones are becon
more non-orthogonal, thus giving rise to large corner couplings. This effect in the mat
means that off-diagonal elements are being populated with nontrivial values. At the sé
time, as the radiation front is traveling through the CH foam, the time step is increasi
This also leads off-diagonal elements in the matrix to become more important. The resu
these two effects can be seen when we compare iteration count versus time for the va
solvers. Although all the solvers scale with problem time, DSCG is by far the most sensiti
When we look at iteration count for the medium and large Kershaw problems, we obsen
sensitivity (albeit weak) of both the ILUT+GMRES and ICT+CG solvers. By far, the SM(
and SMG+CG solvers show the best scalability as evidenced by the fact that their itera
count as a function of time is almost independent of problem size.

Although iteration count is interesting, the bottom line is CPU time. Tables I, I, and |
give the CPU times for the parts of the simulation that we are interested in: total cc
execution time, execution time for the radiation transport, and execution time for the lin
solvers. For the small Kershaw problem the ILUT+GMRES and ICT+CG are competiti
with the multigrid solvers (SMG and SMG+CG), each giving rise to a speedup3®
compared to DSCG. As the problem size is increased to 8000 and then 128,000 zc
we observe several interesting features of the solvers (see Table V). The ILUT+GMR
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TABLE |
Runtimes for Small Kershaw Problent?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 179.14 118.54 102.72 105.33 103.46
Radiation 156.06 93.75 78.60 82.26 80.18
Linear solve 105.70 40.87 30.33 31.56 29.12
2|n seconds.
TABLE 1l
Runtimes for Medium Kershaw Problem?
DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 1255.81 592.61 496.61 456.99 439.55
Radiation 1161.53 491.89 397.14 362.63 345.54
Linear solve 942.80 270.00 181.56 143.79 127.20
2|n seconds.
M Mar- 4 '2Tlag ‘®A ho
| 1 | I 1 IRETH| M
1.00e+08 o
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P |
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] S SOOI i [P o
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FIG. 8. lteration counts for medium Kershaw problem.
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FIG. 9. lteration counts for large Kershaw problem.

seems to reach an asymptotic speedup valuedofelative to DSCG. The ICT+CG solver
is able to yield a speedup of a factorsfL1l by the time we reach problem sizes on the
Kershaw mesh of 128,000. But, by far, the biggest winners are SMG and SMG+CG. T
medium Kershaw mesh shows a slight separation in speedups between ICT+CG an
SMG solvers. However, the strongest separation occurs for the large problem where |
SMG solvers beat ICT+CG by a factor of 2. This problem is evidence of the fact that r
ning a scalable algorithm like SMG or SMG+CG, although expensive per iteration, mc
than makes up for its overhead when large matrices (oxd€0,000x 100,000) need to
be inverted.

TABLE Il
Runtimes for Large Kershaw Problen?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 103,294.39 31,096.20 15,124.77 10,932.68 10,430.30
Radiation 101,238.93 28,890.89 12,929.50 8,866.40 8,373.00
Linear solve 96,403.21 23,910.35 8,105.20 3,993.01 3,520.13

2 |n seconds.
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FIG. 10. Time steps for medium Kershaw problem.

5.2. Spherical Diffusion without Hydrodynamics

In this problem, the mesh is again fixed in time. This problem tests the linear sol
convergence rate on a mesh more typical of what appears in ICF calculations (at |
initially before instabilities and shocks set in and destroy the symmetry of the mes
Figures 11, 12, 13, and 14 show the evolution of the radiation temperature and mesh fo
problem. In Figs. 15, 16, and 17 we see iteration count as a function of time for the sm
medium, and large size meshes. Figure 18 shows the time step as a function of time
mentioned previously, the time step started at®10s and was allowed to increase by the
factor of 1.2 per cycle unless the fractional change in the radiation temperature excee
0.2. The time step increases, and if the accuracy criterion is violated, the reduced time
is applied at the next cycle. We note some of the same features that were observed il

TABLE IV
Speedup (over DS+CG) for Kershaw Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 2.59 3.48 3.35 3.63
Medium problem 1.00 3.43 5.09 6.56 7.41
Large problem 1.00 2.43 11.89 24.14 27.38
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50.000

40.000

30.000

20.000

10.000

1.000e-08 1.000e-07 1.000e-06 1.000e-05 1.000e-04 1.000e-03

FIG. 15. Iteration counts for small spherical diffusion problem.

Kershaw mesh: First, the obvious scaling of DSCG iteration count with both time step ¢
problem size, although the growth of iteration count with time step and problem size is|
as severe as that in the Kershaw case. The reason for this is, primarily, the smooth, al
orthogonal nature of the mesh compared to the mesh in the Kershaw problem, which imy
a matrix more sparsely populated in off-diagonal entries. This explains, for example, v
the DSCG iteration count for this problem barely gets past 100 for the medium size prob!
while for the Kershaw case, the iteration count was at several hundred. Tables V, VI,
VII show the CPU time spent in the whole code, radiation package, and linear solver
addition, the relative speedups compared to DSCG are shown. The speedups for all so
relative to DSCG are impressive even for the small problems with a maximum speedu

TABLE V
Runtimes for Small Spherical Diffusion Problen?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 76.95 68.42 65.42 64.52 66.18
Radiation 59.09 50.47 47.36 46.23 48.18
Linear solve 21.22 11.78 8.92 5.93 7.95

2|n seconds.
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FIG. 18. Time step for medium spherical diffusion problem.

3.58 for the SMG solver (see Table VIII). For the medium mesh results, again SMG
itself is the clear winner (speedup factor of 10.54), closely followed by SMG+CG (speec
factor of 7.76), ICT+CG (speedup factor of 6.25), and finally ILUT+GMRES (speedt
factor of 4.58). Similarly to the Kershaw problem we again see SMG (either SMG alo
or as preconditioner to CG) a clear winner. The large mesh problem shows even n
impressive results, with SMG alone a clear winner at a 16.75 speedup over DSCG.

5.3. Radiatively Driven Symmetric Implosion

This problem tests the radiation—hydrodynamics on a rectilinear ALE mesh in a conf
uration relevant to ICF calculations. The important fact concerning this problem andthe r

TABLE VI
Runtimes for Medium Spherical Diffusion Problem?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 6074.63 1633.89 1509.51 1393.90 1445.30
Radiation 4761.21 1267.50 1141.31 1029.40 1079.23
Linear solve 1415.69 308.95 226.55 134.31 182.40

2|n seconds.
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TABLE VII
Runtimes for Large Spherical Diffusion Problent?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 10,4472.08 20,361.25 12,745.62 11,405.62 12,001.11
Radiation 8,2519.81 17,662.52 10,054.89 8,746.91 9,292.76
Linear solve 2,3395.36 10,146.93 2,704.00 1,397.07 1,925.50

@|n seconds.

problem is that the mesh is dynamic; it responds to material motion and relaxes when z
distortion becomes too extreme. Figures 19, 20, 21, and 22 show time snapshots o
radiation temperature and mesh for the medium size problem. The figures show the ir
300 eV He source, the subsequent ablation of the CH foam, and finally the compres:
of the DT ice. Figures 23, 24, and 25 show the iteration count as a function of time
all solvers. The DSCG again shows the most iterations, with the characteristic scalin
iteration count with problem size and time step. For the small problem, the SMG shows
next highest number of iterations to convergence followed by ILUT+GMRES, ICT+C(
and SMG+CG (the last two show comparable iteration counts). For the medium and |z
problems, we see the characteristic weak scaling of ILUT+GMRES and ICT+CG wi
problem size and the SMG+CG scheme almost completely independent of problem s
It is interesting to note that the SMG scheme, although algorithmically scalable, requi
approximately 100 iterations to converge over a large portion of the problem time. T
fact illustrates the utility of using SMG as a preconditioner for CG to give a more robt
algorithm overall.

One important feature of the time step in this type of problem (i.e., implosions), whi
is different from the radiation-only cases discussed earlier, is the rapid decrease in the
step due to the shrinking of zones (see Figs. 21 and 26).This time step drop is prime
due to the Courant condition placed on the hydrodynamics. Tables IX, X, and XlI sh
the CPU time spent in the whole code, radiation package, and linear solver. In addition,
relative speedups compared to DSCG are shown in Table Xlll. What was surprising \
that the relative speedups, although significant, were not as large as those seen earl
the pure radiation diffusion problems. For example, for the small problem, the speed
never exceeded a factor of 2 while for the large mesh problems the speedups did not
reach a factor of 10, for two reasons. One is the time step control coming from the expl
hydrodynamics (i.e., Courant condition) and the other is the property of ALE to smooth ¢
distorted meshes. In fact, if allowed to do so, ALE would try to smooth out the Kershe
mesh if the hydrodynamics were turned on. Lower time steps keep the matrix diagon

TABLE VIII
Speedups for Spherical Diffusion Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 1.80 2.38 3.58 2.67
Medium problem 1.00 4.58 6.25 10.54 7.76
Large problem 1.00 231 8.65 16.75 12.15
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TABLE IX
Runtimes for Small Symmetric Implosion Problen?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 191.52 162.52 173.47 199.92 167.39
Radiation 79.45 58.11 60.62 91.53 63.03
Linear solve 34.58 15.36 12.44 45.22 20.85
2|n seconds.
TABLE X

Runtimes for Medium Symmetric Implosion Problem?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 18,044.61 9060.15 8289.29 14,447.06 9519.38
Radiation 13,397.81 4365.24 3380.86 9,761.04 4662.40
Linear solve 11,415.53 2301.53 1251.66 7,754.48 2571.45
2]n seconds.
TABLE XI

Estimated Runtimes for Medium Symmetric Implosion Problem with 50 Groups

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 674,547 222,945 173,959 492,736 237,957
Radiation 669,900 218,250 169,050 488,050 233,100
2n seconds.
TABLE Xl
Runtimes for Large Symmetric Implosion Problen?
DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 268,261.96 195,932.93 182,955.08 225,516.22 199,480.29
Radiation 185,486.13 100,980.08 76,225.40 128,005.89 89,666.50
Linear solve 149,820.31 58,636.32 29,410.26 85,417.22 41,950.78
21n seconds.
TABLE XIlI
Speedups for Symmetric Implosion Problem
DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Small problem 1.00 2.25 2.78 0.76 1.65
Medium problem 1.00 4,96 9.12 1.47 4.44

Large problem 1.00 2.56 5.09 1.75 3.57
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dominant and a smooth mesh, as discussed earlier, means smaller corner couplings
more sparsely populated matrix. These two effects combine to make a matrix that is ee
to invert than that in the Kershaw case and a matrix that is more diagonally dominant t
the spherical diffusion without hydrodynamics. The latter fact is due to the rectilinear nat
of the mesh, which keeps the corner coupling terms small.

What is a little misleading when one looks at overall code CPU time is the fact tf
hydrodynamics looks like a bottleneck to overall code performance, at least as far as
linear solvers are concerned. It should be stressed again that these calculations were
for one frequency group. By using one group, we assume that all spectral informati
including opacities, is averaged over the group. In particular, the diffusion coefficie
in Eq. (4) is inversely proportional to the Rosseland opacity, which tends to give mc
weight to the high energy contributions of a full multigroup calculation. Note that the hig
energy regime yields the lowest opacities, and that the off-diagonal matrix elements
proportional toAt/o (with o the opacity). Thus, we see that for higher energy group
the off-diagonal entries can be large, while for the same zone, but lower energy grc
these terms can be small. Therefore, our single group calculation is in some sens
average, although weighted more heavily toward the high energy group side. With
above remarks, a lower estimate for a 50 energy group calculation on the medium s
metric implosion problem can be obtained by multiplying the radiation timings in Te
ble X by 50. This is illustrated in Table XI. As one can observe in the table, this es
mated multigroup calculation illustrates the fact that radiation diffusion in fact dominat
the overall CPU time of the code. The importance, therefore, of any speedup of a 1
tor of 2 or more is that it can mean large savings in CPU time for a multigroup calc
lation.

5.4. Radiatively Driven Asymmetric Implosion

This problem tests the radiation—hydrodynamics on an ALE mesh in a spherical geom
with a nonsymmetric compression of the DT fuel. Although not particularly realistic (or
would not design a capsule with this much asymmetry), this problem tests the linear sol
on amesh which is distorted both in radial and angular directions. Figures 27, 28, 29, an
show time snapshots of the pressure in megabars and the mesh. The figures show the
300 eV He source, the subsequent ablation of the CH foam, and finally the compres
of the DT ice. Note that the compression does not satisfy spherical symmetry. Figures
32, and 33 show the iteration count as a function of time for all solvers. The DSCG ag
shows the most iterations, with the characteristic scaling of iteration count with probile
size and time step. For the small problem, the SMG and ILUT+GMRES show the n
highest number of iterations to convergence followed by SMG+CG and ICT+CG. For f
medium problem, we see the characteristic weak scaling of ILUT+GMRES and ICT+(
with problem size and the SMG schemes almost completely independent of problem
The large problem iteration count versus time shows the characteristic scalings with t
step and problem size. We see that both SMG and SMG+CG are algorithmically scala
although the more robust MC+CG has smaller iteration counts. Again, we see a limi
the time step growth due primarily to the Courant condition placed on the hydrodynan
(Fig. 34). Tables XIV, XV, and XVI show the CPU time spent in the whole code, radiatic
package, and linear solver. In addition, the relative speedups compared to DSCG are st
in Table XVII. The results are similar to those of the radiatively driven symmetric implosio
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TABLE XIV
Runtimes for Small Asymmetric Implosion Problem?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 311.58 249.89 249.12 251.54 250.62
Radiation 47.63 31.12 30.66 32.37 31.82
Linear solve 23.68 7.18 5.73 7.51 6.90
2|n seconds.
TABLE XV
Runtimes for Medium Asymmetric Implosion Problem?
DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 5043.90 4126.60 4532.59 4385.09 4102.50
Radiation 810.44 324.74 277.17 259.27 283.96
Linear solve 600.55 112.16 67.11 52.16 76.76
2|n seconds.
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FIG. 33. lteration counts for large asymmetric implosion problem.
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TABLE XVI
Runtimes for Large Asymmetric Implosion Problem?

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG
Whole code 445,876.04 1,165,554.15 1,150,199.61 0.0 1,102,108.65
Radiation 194,675.51 174,912.03 105,895.58 0.0 75,831.09
Linear solve 185,606.67 122,919.69 31,889.33 0.0 23,107.11
2 |n seconds.
TABLE XVII

Speedup (over DS+CG) for Asymmetric Implosion Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 3.30 4.13 3.15 3.43
Medium problem 1.00 5.35 8.95 11.51 7.82
Large problem 1.00 151 5.82 0.00 8.03
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FIG. 34. Time steps for medium asymmetric implosion problem.
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That s, the results are not quite as impressive as Kershaw's for the same reasons ment
in Section 5.3. However, the results are better than those of the symmetric implosior
a rectilinear ALE mesh. The reason for this is that the highly asymmetric nature of 1
implosion is causing the mesh to distort, giving rise to a matrix with a larger number
corner coupling terms. Note that again it is ICT+CG beating multigrid, albeit weakly ft
the small, medium, and large problems.

We repeat the comments of Section 5.3 for emphasis. These calculations were don
one group, and a multigroup calculation would require that a factor of the number of grot
be applied to the CPU time spent in the linear solver. Therefore, a multigroup calculat
with more than 10 groups would in fact show that radiation diffusion dominates the ovel
CPU time of the code. The importance, therefore, of any speedup of a factor of 2 or m
is that it can mean large savings in CPU time for a multigroup calculation.

6. CONCLUSIONS

Computer codes containing both hydrodynamics and radiation play a central role
simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A cruc
aspect of these codes is that they require an implicit solution of the radiation diffusi
equations. We have shown in this paper the results of a comparison of five different
ear solvers (diagonally scaled conjugate gradient (DSCG), GMRES with incomplete
preconditioning (ILUT+GMRES), conjugate gradient with incomplete Cholesky preco
ditioning (ICT+CG), multigrid (SMG), and multigrid-preconditioned conjugate gradier
(SMG+CGQG)) over a range of complex radiation and radiation—hydrodynamics probler
and over a range of problem sizes. The importance of scalable linear solvers is clearly r
ifest when timing comparisons are performed between DSCG, ILUT+GMRES, ICT+C
and SMG or SMG+CG for pure radiation flow problems. The large size pure radiation fl
problems show a speedup factore80 when SMG or SMG+CG is compared to DSCG.
The timing differences between the linear solvers become all the more important wil
multigroup calculations are performed. For problems involving radiation—hydrodynan
flows, the situation is more complex. The results of our scalability study clearly show 1
inadequacies of DSCG as both problem size and time step grow for these types of p
lems. However, ICT+CG is comparable to and even slightly better than SMG or SMG+C
For the large symmetric and nonsymmetric radiatively driven implosions, ICT+CG, SM
and SMG+CG all show speedup factorsraf0 compared to DSCG. This observation is
tied to several facts. In a multiphysics code such as the code discussed in this paper,
step controls and mesh relaxation play an important role in determining the nature
structure of the matrix. The performance figures presented here for the linear solvers
in fact “integral” quantities. What we observe is a close correlation between time step,
diagonal dominance of the matrix, and the subsequent iteration count of the linear sol
Since the problems presented in this study all start at a relatively small time step, DS
beats all solvers up to a point where DSCG is takaritp0 iterations to converge. At this
point, ILUT+GMRES, ICT+CG, SMG, and SMG+CG all become cost effective and ou
perform DSCG. For a large enough time step, SMG and SMG+CG beat all solvers. T
is what we observe in the Kershaw and spherical diffusion problems. However, in ca
where hydrodynamic flows and time scales are involved, the code may lower the time :
due to converging shocks, thus making the matrix more diagonally dominant and ther
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making it easier for ILUT+GMRES or ICT+CG to solve than either SMG or SMG+CG
This behavior is observed in the implosion problems. The above discussion leads to the
that a code with some measure of adaptivity with regard to linear solver choice will r
optimally. How and when this choice is to be made in a radiation—hydrodynamics cod:
an interesting issue and we leave this topic to future discussion.
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